
Economic instruments for the sustainable provision of land resources: soil, water and fodder

EFIMED Annual Meeting 2009 Marrakech 29th April – 1st May 2009

Hamed Daly, INRGREF, Tunis Davide Pettenella, University of Padova

1. Introduction Image: Constraint of the second s

Outline Introduction: state of the problem and research questions Main problems in implementing economic tools for the sound management of forest resources Case studies Conclusions

Economic causes of degradation

- In MENA, farmers and local forest users maximize their current commercial incomes from an intensive use of natural resources at present (subsistence economy)
- In all Med areas, costs of degradation are not considered
- Investment for sustainable management induces low direct returns, but could generate higher benefits for society:
 - local- and national-scale externalities: increased soil fertility and water capacity, ...
 - global-scale externalities: biodiversity protection, Carbon sequestration, ...

Research questions

- Why economic instruments are needed to induce sustainable management ?
 - Comparison of the **farmers' income and degradation costs** between current and sustainable use/ management
 - Comparison between private and social net benefits
- How environmental services are addressed by economic instruments ?
 - Identification of the potential to finance the environmental benefits through economic instruments and market-based mechanisms

Mixed forest services, time span, scale

 Not only the traditional mixed dimension (public and private) of forest services

and the **time span problem** (short-term financial revenues vs. long-term economic benefits)

but also

the scale dimension of the benefits and costs perception ...

	Basin size [km ²]						
Impact Type	0.1	1	10	102	10 ³	10 ⁴	10
Average flow	×	×	×	x	·		-
Peak flow	×	х	×	×		1020	-
Base flow	×	×	x	×	<u> </u>	-	-
Groundwater recharge	×	×	×	×	-	1.000	-
Sediment load	×	×	×	×	<u></u>	-	-
Nutrients	×	×	×	×	×		-
Organic matter	×		× .	× .	-		-
Pathogens	×	×	x	-	2		-
Salinity	×	×	×	×	×	×	×
Pesticides	×	×	×	×	x	×	×
Heavy metals	×	×	×	x	x	x	×
Thermal regime	×	×.	-		-		-

Institutional arrangements

 Not only the traditional mixed dimension (public and private) of forest services

and the **time span problem** (short-term financial revenues vs, long-term economic benefits)

but also

- the scale dimension of the of benefits and costs perception ...
- ... and thus the problems related to institutional arrangements to implement the principle "who benefits, pays" → Payment for Env. Services (PES)

Failure to consider full economic values

- Non market benefits and off site effects are not usually considered
- Difficuty to measure the land use effects on soil erosion and sedimentation for large basins

Types of market-based payments for water provision services (Perrot-Maître & Davis, 2001)

Voluntary Contractual Arrangements

= direct negotiations between water users and landowners

 \rightarrow La Esperanza hydropower producer pays the NGO Monteverde Conservation League for maintaining existing forest cover in the upper catchments - Costa Rica

Trading Schemes

= trade of "credits" between companies and landowners for exceeding the requirements on water use or pollution limits

ightarrow The Tam-Pamlico Trading Program in USA

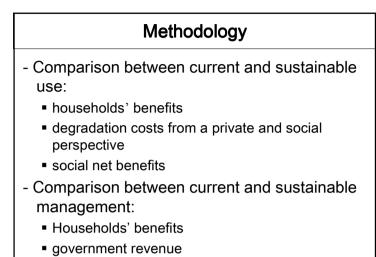
Public Payment Schemes

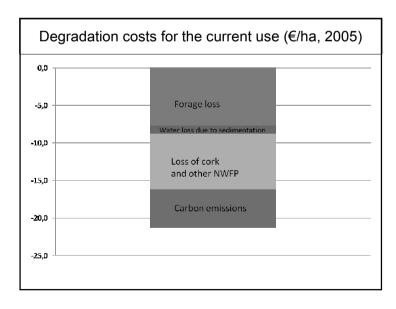
= direct payments to farmers/forest owners for management practices that protect water quality

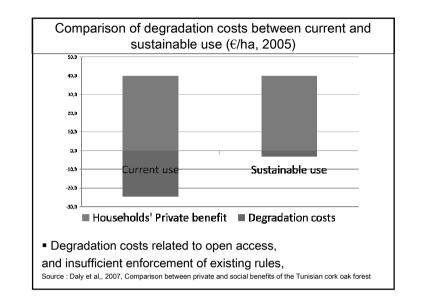
ightarrow Council Regulation 1698/2005 for Rural Development 2007-2013 (Axis 2)

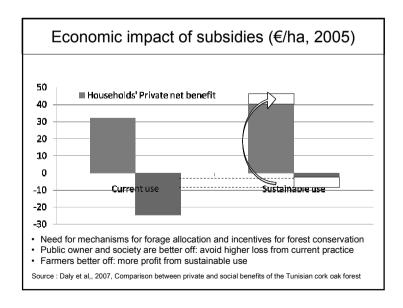
	Voluntary Schemes	Compliant-based Schemes	Government-mediated Schemes
Main driving forces	Profit (business) Public Relation strategy, Corporate Social Responsibility (CSR)	Governmental laws/regulations	Public authority role in providing environmental - ecosystem services (with no or limited market) to the community
Main payment mechanism	Service's suppliers (forest owners or managers) directly paid by service's end-users for forest management specifically oriented to provide the service (ex, recreation)	Service's suppliers (forest owners or managers) indirectly paid by service's end- users for maintaining the forest functions	Service's suppliers (landowners) indirectly paid by public authorities (responsible towards the general public -> end-users) for forest management specifically oriented to provide the service (ex, quality of water),
Main instrument	Contractual agreements, tickets to access the recreational area,	Property rights regulations by selling picking permits	water tariff paid by water end- users + public funds allocation policies

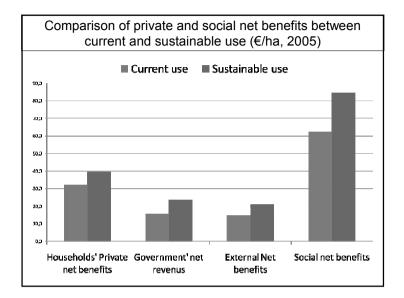
- (A) Cork oak management (Tunisia)
- (B) Bou Hertma e Marguellil watershed investments (Tunisia)
- (C) Tap water provision by Val Nossana spring (Italy)

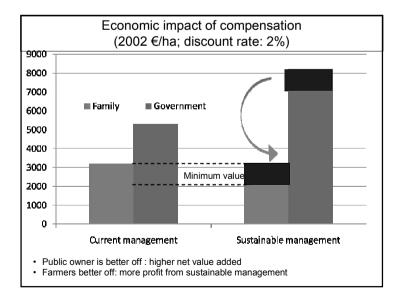

Types of economic instruments

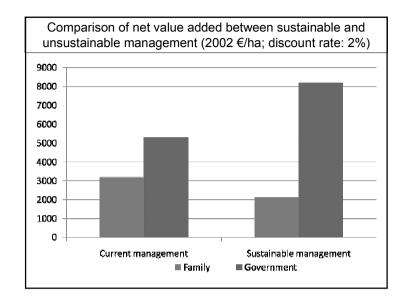

- Incentives and grants
- Compensations
- User charge /fees / natural resources taxes
- Market-based mechanisms (Negotiated agreements, Marketing of environmental services, certification)
- In addition, institutional arrangements are needed for resources allocation (access conditions, etc.)


Case study (A): Cork oak forest management

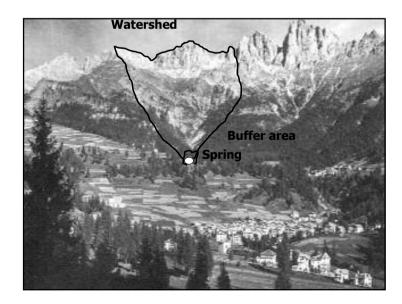

- Lack of clearly defined property rights:
 - State owner has the exclusion rights on land uses, but local households have free access for livestock grazing, firewood and NWFP harvesting
 - Management guided by rational management aims for land owner,
 - and by maximizing the current commercial income for local users



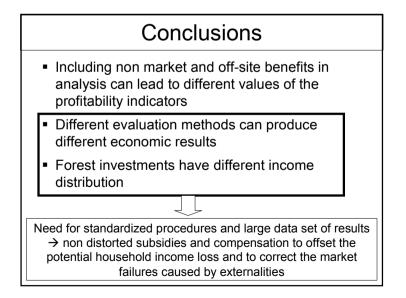


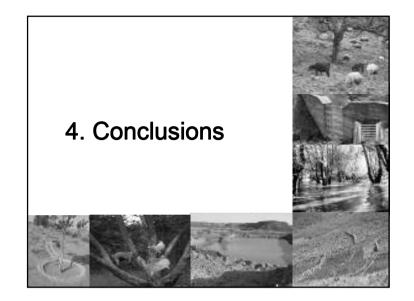


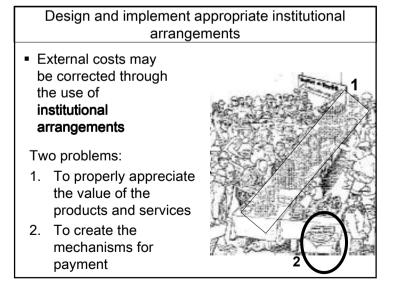
Case study (B): Bou Hertma e Marguellil watershed investment						
Planned investments (Bou Hertma)						
Components	Area (or km)	Investments costs (\$/ha)	Total costs (\$)			
Pine plantation for wood production	434	2,317	1,005,578			
Plantations with mixed sp. for soil protection	190	1,368	259,920			
Cork oak regeneration	837	242	202,554			
Grazing land amelioration	1,017	2,039	2,073,663			
Meadow management	110	1,299	142,890			
Management of existing forests	685	353	241,805			
Soil stabilization	280	550	154,000			
Pine forests thinning	939	160	150,240			
Forest roads construction	Km 44	Km 15,000	660,000			
NWFPs	2,461	-	-			
Total			4,890,650			


Case study (B): Bou Hertma e Marguellil watershed investment						
A step-wise	approach					
Effects	Financial Analysis (FA)	Conventional Economic Analysis (CEA)	Extended Economic Analysis (EEA)	Socio- Economic Analysis (SEA)		
On site (for the residents)	*	*	*	*		
Off site (external to the watershed)	_	_	*	*		
Market	*	*	*	*		
No market	_	_	*	*		
Redistribution among stakeholders	_		_	*		

Case study (C): Tap water provision by Val Nossana spring


What to evaluate?


- The product or service:
 - Water "produced" by the watershed
 - Water consumed
- Reference area:
 - Spring
 - Buffer area around the spring
 - Catchment area (watershed)


	Watershed	NPV (000 \$)	IR	
FA ———	B Increased farm, wood and	1 186 039	12.7	
	M NWFPs production	- 1 435 617	9.2	
	Total	-249 578	9.9	
CEA —	Bou Impact on accessibility (road	construction),	19.9	
	Marg increased time span of the da	am	13.9	
	Total	10 408 557	15.4	
EEA ——	Bou Impact on tourism	6 231 660	23.3	
	Marc C sequestration	10 534 898	17.69	
	Tota.	16 776 558	19.19	
SEA —	Bou Hertma	9 325 018	28.0	
		Margu Costs and benefits weighted for 3 groups of stakeholders: residents (1.5), farmers		
	Total downstream (1.15) other (1		23.1	

Case study (C): Tap water provision by Val Nossana spring							
Methods		Evaluation Criteria	Reference area	Reference market	Land value (€/ha)	Water value (€/mc)	
Indirect costs approaches Ref. to land use		Market value		Land market vale	21,478	-	
		Cost value		alue Plantation and management costs		12,159	-
	Opportunity cost	Buffer area	Revenue loss from alternative use of land	6,092	-		
		Substitution costs		Meadow creation and management costs	9,657	-	
Additional costs approaches		Cost value	Watershed	Additional management costs	10 - 50	0.0004 - 0.002	
Approaches based on Ref. to costs for the water final use consumers		Cost value		Management costs	1,460 – 7,300	0.15 – 0.75	
	sed on Ref. to ts for the water Substitution costs Watershed final use	Substitution costs		Water supply with alternative means (lorry transport)	-	0.000858	
		Watershed	Water supply with alternative means (new aqueduct)	-	80.00		
		Alternatives to the use of water from aquifer	4,353 - 6,442	260.00 (1)			
		Contingent valuation		Wtp/Wta for an aquifer protection programme	6,529 - 9,664	0.68 – 1.01	

