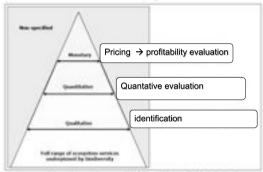
Le doute est désagréable, mais la certitude est ridicule (Voltaire)


BASICS of ECONOMIC EVALUATION OF INVESTMENTS

Davide Pettenella
University of Padova - Italy

Contents

- Timing, scale and distributional effects
- With-without approach
- Discounting
- Profitability indicators: NPV, C/B ratio, IRR
- Discount rate selection
- Risk and uncertainty
- SW use (S.A. and normalization)
- Financial and economic analysis

The evaluation pyramid

Source: P. ten Brink, workshop on the Economics of the Global Loss of Biological Diversity, 5-6 March 2008, Brussels.

Timing of the evaluation

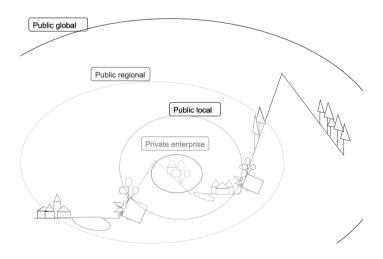
- Ex post evaluation: relatively easy, but not frequent
- In itinere evaluation → monitoring
- Ex ante evaluation: normally quite complex, esp. With project providing public goods

To avoid to be misled by the so-called money illusion keep in mind the differences (Klemperer p. 134 and seg.):

Inflation is included	Inflation is not included
Nominal	Real
Current prices	Constant prices
Inflated	Un-inflated or deflated
Actual prices	Relative prices

A quite weak point of CBA tools

Re-distribution aspects are not normally considered (equity considerations), i.e. gainers and losers at:


- different actors/social groups living in the same context/the same level
- different geographical scales (however, it is possible to refer the costs and benefits evaluation to different scales)

Scale: who benefits where? (from

Kettunen, et al., 2009)

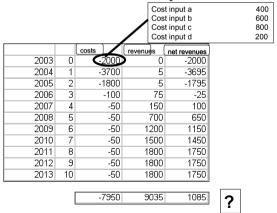
Benefits from forest activities are received at multiple levels:

- local private benefits: water purification resulting in lower pre-treatment costs to the local water supply company, etc.;
- local public benefits: supporting local identity, local nonmarket forest products, etc.;
- regional public sector benefits: mitigating floods resulting to lower public investment in flood control and / or flood damage, etc.;
- regional and cross-border benefits: regulation of climate and floods, mitigation of wild fires, provisioning and purification of water in transnational river basins, etc.;
- international / global public benefits: provision of habitat for a migratory species at some point in its annual cycle, carbon capture and storage, maintenance of genetic diversity), etc.;
- international private benefits: new pharmaceutical or medicinal product derived via bioprospecting, etc.

An example: main potential functions and services of a watershed

Source: Masiero, 2009 - modified from Smith et al., 2006.

Legend:


- 1.Forest sedimentation control
- 2.Recreation, swimming, fishing, camping and water storage
- 3.Hydroelectric station
- 4. Municipal water supply
- 5.City and industrial waste treatment plant
- 6. Pump to equalizing reservoir for irrigation
- 7.Diversion dam and lake
- 8. High-level irrigation canal
- 9.Levees for flood control
- 10.Erosion control: stream drams, contour terracing and wetland restoration
- 11.Regulating basin for irrigation
- 12.Wildlife refugee
- 13.Low level irrigation canal
- 14.Gravity irrigation
- 15.Contour ploughing
- 16.Sprinkler irrigation
- 17.Community Water Treatment Plan
- 18. Navigation: barge, trains, locks
- 19.Re-regulating reservoir with locks
- 20.Farm pond with pisciculture

"With-without" approach

When our site is undergoing some (positive or negative) changes, the w.w.a is needed:

- = consider the missed costs and benefits
- →2 forecasting exercises
 - the baseline
 - the "with project" scenario

Cash flow for the financial analysis

Cash flow for the economic analysis

			Costs	for input a for input b for input c for input d	400 600*0.8=480 800*0.7=560 200
		costs	benefits	net benefits	
2003	0	-1640	0	-1640	
2004	1	-3400	5	-3395	
2005	2	-1700	5	-1695	
2006	3	-80	80	0	
2007	4	-45	160	115	
2008	5	-45	800	755	
2009	6	-45	1300	1255	
2010	7	-45	1600	1555	
2011	8	-45	1900	1855	
2012	9	-45	1900	1855	
2013	10	-45	1900	1855	

r = 20% → 0.20

Year	Capital	-	Capital	+	Interest
0	100	=	100	+	0
1	120	=	100	+	100 0.2
2	144	=	120	+	120 0.2
3	172.8	=	144	+	144 0.2
0 1 2	C ₀ C ₁ C ₂ C ₃		+ (C ₀ r) + (C ₁ r)	$= C_0 (1 + r)$ $= C_1 (1 + r)$ $= C_0 (1 + r)$ $= C_0 (1 + r) (1 + r)$) (1 + r)

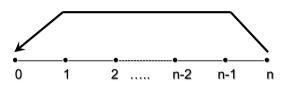
Compounding and discounting

$$I = C_n - C_0 \qquad \text{(with } n \ge 0)$$

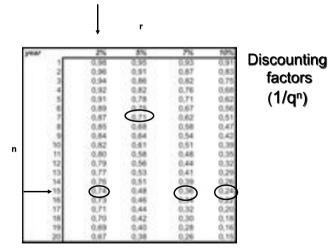
How you find the value of C_n?

Compounding

$$C_n = C_o \cdot (1+r)^n$$


Example:

3M in the 2nd year of an investment, compounded to the 10th at 3%

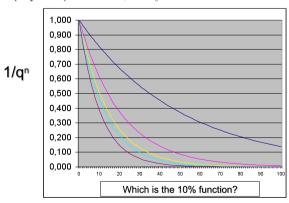

 $3M \times (1+0.03)^8 = 3M \times 1.03^8 = 3M \times 1.267 = 3.8M$

The opposite procedure is called:

Discounting

$$C_o = C_n \cdot \frac{1}{(1+r)^n}$$

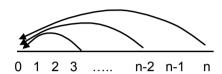
Discounting


E.g., discounting 1.5 M referred to the 7th at a 5% interest rate:

$$1.5 \text{ M} \times 1/(1+0.05)^7 = 1.5 \text{ M} \times 1/(1.05)^7$$

= 1.5 M x 0.71
= 1.065 M (= the present value)

To check our results, let's do the opposite procedure (compounding):


Investing a capital of 1.065 M at 5% for 7 years, the final value is 1.5 M.

"The positive interest rate is the enemy of long-lived investment projects" (Samuelson, 1976)

Profitability indicators

To elaborate profitability indicator discounting is the fundamental operation:

$$C_0 = C_n x \frac{1}{(1 + r)^n}$$

E.g., with r = 10%

year	Costs	Benefits
0	-100	0
1	-110	120
2	0	144

Profitability indicators

Net Present Value or Net Discounted Value

NPV=
$$\sum \frac{(B_{n-}C_n)}{(1 + r)^n}$$

B = benefits (or revenues)

C = costs

r = interest rate

n = year (n = 0...t)

Benefit/Cost Ratio

$$R/C = \sum \frac{B_n}{(1 + r)^n} / \sum \frac{C_n}{(1 + r)^n}$$

E.g., with r = 10%

			_
-100	(1/1.1	1^0) = -100 x 1 =	-100,0
-110	(1/1.1	^1) = -110 x 0,91 =	-100,0
120	(1/1.1	^1) = 120 x 0,91 =	109,0
144	(1/1.1	^2) = 144 x 0,83 =	119,0
		R/C = 1.14	

	2	0		144
-100,0				
-100,0		ΣС	=	200,0
109,0				
119,0		ΣR	=	228,0

year Costs Benefits
0 -100 0

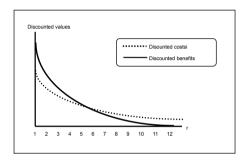
-110

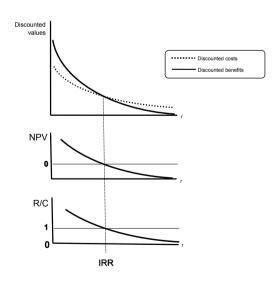
120

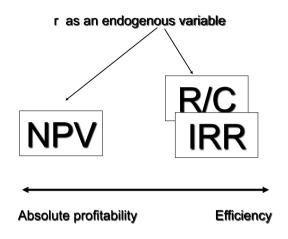
Internal Rate of Return

IRR = the discount rate when NPV = 0

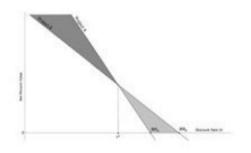
year	Costs	Benefits
0	-200	0
1	0	120
2	0	144

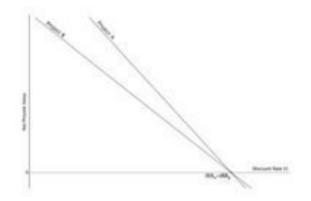

IRR= 20%


Another, more realistic, example


year	Costs	Benefits
0	-5 000	C
	0	C
9	0	20 000

IRR= 16.652%


IRR can be used only in so-called "simple" investments



The IRR does not necessarily tell which project is better (Zerbe and Evans, 2010)

The IRR does not necessarily tell which project is better (Zerbe and Evans, 2010)

A summary test (r = discount rate)

If I am using NPV, I will consider acceptable all investments with NPV:

If I am using R/C, I will consider acceptable all investments with R/C:

If I am using IRR, I will consider acceptable all investments with IRR:

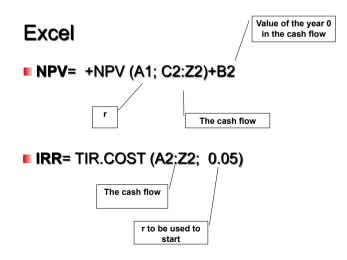
Discount rate selection

A. Rigorous approaches

Financial analysis:

- Opportunity costs of capital (see alternative investments)
- Private time preferences rate

Economic analysis:


social time preferences rate

Criticism to all the discounting approach

- Pearce's proposal of adopting different r for different periods (e.g.: 3.5% for the first 10 years, 3% from 11th al 20th, 2.5% from 21st, ...)
- Modified Discounting Method (Kula): life expectancy included in the re-definition of r (flat discount rate after a period connected with life expectancy)
- Radical abandonment of discounting techniques (when dealing with non renewable resources r=0 (Marglin, Feldstein)

B. Pragmatic considerations:

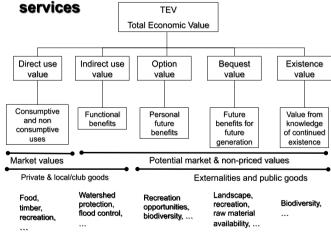
- Internal rate of return of private investments (at the same level of risk)
- Average rate of public bonds (for the same time length of investments)
- A proportion of the GDP growth rate in the long term

How to include/treat risks and uncertainty?

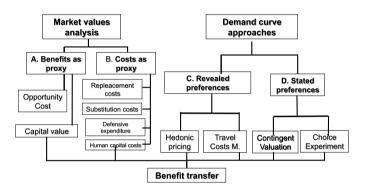
- Mitigation funds
- A premium in the interest rate
- Probabilistic values/functions e.g.: not 2000 Euro, but: (1700 x 0.2 + 1900 x 0.3 + 2100 x 0.3 + 2300 x 0.2)
- Payback period
- Sensitivity analysis To analyze r.& u., not to internalize them!

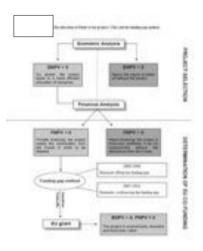
In the economic analysis:

(Markandya, Harou, Bellù e Cistulli, 2002):


- Input and output prices = international prices ("border" prices)
- Prices changes by the public sector (i.e. taxes and incentives) are not considered
- Extenalities are included ("shadow prices")
- Social discount rates are used in discounting

Financial and economic analysis


- Financial analysis: costs and revenues are defined looking at the local market prices → profitability for the private actor(s) ("Business plan")
- Economic analysis: costs and benefits for the community are taken into consideration


A question: labour costs are higher in the financial or in the economic analysis?

Economic values of environmental

Methods for the valuation of non-priced goods

A. Mairate e F. Angelini , 2006